

UNIT IV

COMPOUND DATA: LISTS, TUPLES, DICTIONARIES

Lists, list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists,

list parameters; Tuples, tuple assignment, tuple as return value; Dictionaries:

operations and methods; advanced list processing - list comprehension, Illustrative

programs: selection sort, insertion sort, merge sort, quick sort.

Lists

 List is an ordered sequence of items. Values in the list are called elements / items.

 It can be written as a list of comma-separated items (values) between square
brackets[].

 Items in the lists can be of different data types.
Eg: a=[10, 20, 30, 40]; b=[10, 20, “abc”, 4.5]

 The following list contains a string, a float, an integer, and (lo!) another list:
['spam', 2.0, 5, [10, 20]]

 A list within another list is nested. A list that contains no elements is called an empty
list; you can create one with empty brackets, [].

 As you might expect, you can assign list values to variables:
>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> numbers = [17, 123]
>>> empty = []
>>> print cheeses, numbers, empty
['Cheddar', 'Edam', 'Gouda'] [17, 123] []

Operations on list:

1. Indexing
2. Slicing
3. Concatenation
4. Repetitions
5. Updating
6. Membership
7. Comparison

operations examples description

create a list >>> a=[2,3,4,5,6,7,8,9,10] in this way we can create a

 >>> print(a) list at compile time

 [2, 3, 4, 5, 6, 7, 8, 9, 10]

 >>> print(a[0]) Accessing the item in the

Indexing 2 position 0

 >>> print(a[8]) Accessing the item in the

 10 position 8

 >>> print(a[-1]) Accessing a last element

 10 using negative indexing.

>>> print(a[0:3])

Slicing [2, 3, 4]

 >>> print(a[0:]) Printing a part of the list.

 [2, 3, 4, 5, 6, 7, 8, 9, 10]

 >>>b=[20,30] Adding and printing the

Concatenation >>> print(a+b) items of two lists.

 [2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30]

 >>> print(b*3) Create a multiple copies of

Repetition [20, 30, 20, 30, 20, 30] the same list.

 >>> print(a[2])

 4 Updating the list using

Updating >>> a[2]=100 index value.

 >>> print(a)

 [2, 3, 100, 5, 6, 7, 8, 9, 10]

 >>> a=[2,3,4,5,6,7,8,9,10]

 >>> 5 in a

Membership True Returns True if element is

 >>> 100 in a present in list. Otherwise

 False returns false.

 >>> 2 not in a

 False

 >>> a=[2,3,4,5,6,7,8,9,10]

Comparison
>>>b=[2,3,4] Returns True if all elements

>>> a==b in both elements are same.

 False Otherwise returns false

 >>> a!=b

 True

List slices:

 List slicing is an operation that extracts a subset of elements from an list and packages
them as another list.

Syntax:

Listname[start:stop]

Listname[start:stop:steps]

 default start value is 0

 default stop value is n-1

 [:] this will print the entire list

 [2:2] this will create a empty slice

slices example description

a[0:3] >>> a=[9,8,7,6,5,4]

>>> a[0:3]

[9, 8, 7]

Printing a part of a list from

0 to 2.

a[:4] >>> a[:4]

[9, 8, 7, 6]

Default start value is 0. so

prints from 0 to 3

a[1:] >>> a[1:]

[8, 7, 6, 5, 4]

default stop value will be

n-1. so prints from 1 to 5

a[:] >>> a[:]

[9, 8, 7, 6, 5, 4]

Prints the entire list.

slices example description

a[2:2] >>> a[2:2]

[]

print an empty slice

a[0:6:2] >>> a=[9,8,7,6,5,4]
>>> a[0:6:2]

[9, 7, 5]
>>> a[0:6:3]
[9,6]

Slicing list values with step

size 2.(from index[0] to 2nd
element and from that
position to next 2nd element

List methods:

Python provides methods that operate on lists.
syntax:

list name.method name(element/index/list)

 syntax example description

1

a.append(element)

>>> a=[1,2,3,4,5]

>>> a.append(6)

>>> print(a)

[1, 2, 3, 4, 5, 6]

Add an element to

the end of the list

2 a.insert(index,element) >>> a.insert(0,0) Insert an item at the

 >>> print(a) defined index

 [0, 1, 2, 3, 4, 5, 6]

3 a.extend(b) >>> a=[1,2,3,4,5]
>>> b=[7,8,9]

>>> a.extend(b)

>>> print(a)

[0, 1, 2, 3, 4, 5, 6, 7, 8,9]

Add all elements of a

list to the another

list

4

a.index(element)

>>>a=[0, 1, 2, 3, 8,5, 6, 7, 8,9]
>>> a.index(8)

4

Returns the index of

the first matched

item

5

sum()

>>> a=[1,2,3,4,5]
>>> sum(a)

>>> print(a)

[0, 1, 2, 3, 4, 5, 6, 7, 8,9]

Sort items in a list in

ascending order

6

a.reverse()

>>> a.reverse()

>>> print(a)

[8, 7, 6, 5, 4, 3, 2, 1, 0]

Reverse the order of

items in the list

7 a.pop()

>>>a=[8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> a.pop() Removes and

0
>>>print(a)
=[8, 7, 6, 5, 4, 3, 2, 1] returns an element

 at the last element

8 a.pop(index) >>> a.pop(0) Remove the

8
>>>print(a)
[7, 6, 5, 4, 3, 2, 1, 0] particular element

 and return it.

9 a.remove(element)

>>>a=[7, 6, 5, 4, 3, 2, 1]
>>> a.remove(1) Removes an item

 >>> print(a) from the list

 [7, 6, 5, 4, 3, 2]

10 a.count(element)

>>>a=[7, 6, 5, 4, 3, 2,6]
>>> a.count(6) Returns the count of

 2 number of items

 passed as an

 argument

11 a.copy()

>>>a=[7, 6, 5, 4, 3, 2]
>>> b=a.copy() Returns a

 >>> print(b) copy of the list

 [7, 6, 5, 4, 3, 2]

12 len(list)

>>>a=[7, 6, 5, 4, 3, 2]
>>> len(a) return the length of

 6 the length

17 sum(list)

>>>a=[7, 6, 5, 4, 3, 2]
>>> sum(a) return the sum of

 27 element in a list

14 max(list) >>> max(a) return the maximum

 7

element in a list.

15 a.clear() >>> a.clear() Removes all items

 >>> print(a) from the list.

 []

16 del(a) >>> del(a) delete the entire list.

 >>> print(a)

 Error: name 'a' is not

 defined

List loops:

1. For loop
2. While loop
3. Infinite loop

List using For Loop:

 The for loop in Python is used to iterate over a sequence (list, tuple, string) or other
iterable objects.

 Iterating over a sequence is called traversal.

 Loop continues until we reach the last item in the sequence.

 The body of for loop is separated from the rest of the code using indentation.

Syntax:

for val in sequence:

Accessing element output

a=[10,20,30,40,50] 10

for i in a: 20

print(i) 30

 40

 50

Accessing index output

a=[10,20,30,40,50] 0

for i in range(0,len(a),1): 1

print(i) 2

 3

 4

Accessing element using range: output

a=[10,20,30,40,50] 10

for i in range(0,len(a),1): 20

print(a[i]) 30

 40

 50

List using While loop

 The while loop in Python is used to iterate over a block of code as long as the test
expression (condition) is true.

 When the condition is tested and the result is false, the loop body will be skipped and the
first statement after the while loop will be executed.

 Syntax:

 while (condition):

 body of while

Sum of elements in list Output:

a=[1,2,3,4,5] 15

i=0

sum=0

while i<len(a):

sum=sum+a[i]

i=i+1

print(sum)

Infinite Loop

A loop becomes infinite loop if the condition given never becomes false. It keeps on
running. Such loops are called infinite loop.

Example Output:

a=1 Enter the number 10

while (a==1): you entered:10

n=int(input("enter the number")) Enter the number 12

print("you entered:" , n) you entered:12

 Enter the number 16

 you entered:16

Mutability:

 Lists are mutable. (can be changed)

 Mutability is the ability for certain types of data to be changed without entirely
recreating it.

 An item can be changed in a list by accessing it directly as part of the assignment
statement.

 Using the indexing operator (square brackets[]) on the left side of an assignment,
one of the list items can be updated.

Example description

>>> a=[1,2,3,4,5]

>>> a[0]=100

>>> print(a)

[100, 2, 3, 4, 5]

changing single element

>>> a=[1,2,3,4,5]

>>> a[0:3]=[100,100,100]

>>> print(a)

[100, 100, 100, 4, 5]

changing multiple element

>>> a=[1,2,3,4,5] The elements from a list can also be

>>> a[0:3]=[] removed by assigning the empty list to

>>> print(a) them.

[4, 5]

>>> a=[1,2,3,4,5] The elements can be inserted into a list by

>>> a[0:0]=[20,30,45] squeezing them into an empty slice at the

>>> print(a) desired location.

[20,30,45,1, 2, 3, 4, 5]

Aliasing(copying):

 Creating a copy of a list is called aliasing.

 When you create a copy both the list will be having same memory location.

 changes in one list will affect another list.

 Alaising refers to having different names for same list values.

Example Output:

a= [1, 2, 3 ,4 ,5]

b=a

print (b) [1, 2, 3, 4, 5]

a is b True

a[0]=100

print(a) [100,2,3,4,5]

print(b) [100,2,3,4,5]

 In this a single list object is created and modified using the subscript operator.

 When the first element of the list named “a” is replaced, the first element of the list
named “b” is also replaced.

 This type of change is what is known as a side effect. This happens because after
the assignment b=a, the variables a and b refer to the exact same list object.

 They are aliases for the same object. This phenomenon is known as aliasing.

 To prevent aliasing, a new object can be created and the contents of the original
can be copied which is called cloning.

Clonning:
 To avoid the disadvantages of copying we are using cloning.

 Creating a copy of a same list of elements with two different memory locations is called cloning.

 Changes in one list will not affect locations of aother list.

 Cloning is a process of making a copy of the list without modifying the original list.

1. Slicing
2. list()method
3. copy() method

clonning using Slicing

>>>a=[1,2,3,4,5]

>>>b=a[:]

>>>print(b)

[1,2,3,4,5]

>>>a is b

False #because they have different memory location

clonning using List() method

>>>a=[1,2,3,4,5]

>>>b=list

>>>print(b)

[1,2,3,4,5]

>>>a is b

false

>>>a[0]=100

>>>print(a)

>>>a=[100,2,3,4,5]

>>>print(b)

>>>b=[1,2,3,4,5]

clonning using copy() method

a=[1,2,3,4,5]

>>>b=a.copy()

>>> print(b)
[1, 2, 3, 4, 5]
>>> a is b
False

List as parameters:

 In python, arguments are passed by reference.

 If any changes are done in the parameter which refers within the function, then the
changes also reflects back in the calling function.

 When a list to a function is passed, the function gets a reference to the list.

 Passing a list as an argument actually passes a reference to the list, not a copy of the list.

 Since lists are mutable, changes made to the elements referenced by the parameter
change the same list that the argument is referencing.

Example 1`: Output

def remove(a): [2,3,4,5]

a.remove(1)

a=[1,2,3,4,5]

remove(a)

print(a)

Example 2: Output

def inside(a): inside [11, 12, 13, 14, 15]

for i in range(0,len(a),1): outside [11, 12, 13, 14, 15]

a[i]=a[i]+10

print(“inside”,a)

a=[1,2,3,4,5]

inside(a)

print(“outside”,a)

Example 3 output

def insert(a): [30, 1, 2, 3, 4, 5]

a.insert(0,30)

a=[1,2,3,4,5]

insert(a)

print(a)

Tuple:

 A tuple is same as list, except that the set of elements is enclosed in parentheses instead
of square brackets.

 A tuple is an immutable list. i.e. once a tuple has been created, you can't add elements to
a tuple or remove elements from the tuple.

 But tuple can be converted into list and list can be converted in to tuple.

 methods example description

 list() >>> a=(1,2,3,4,5) it convert the given tuple

 >>> a=list(a) into list.
 >>> print(a)

 [1, 2, 3, 4, 5]

 tuple() >>> a=[1,2,3,4,5] it convert the given list into

 >>> a=tuple(a) tuple.
 >>> print(a)

 (1, 2, 3, 4, 5)

 Benefit of Tuple:

 Tuples are faster than lists.

 If the user wants to protect the data from accidental changes, tuple can be used.

 Tuples can be used as keys in dictionaries, while lists can't.

Operations on Tuples:

1. Indexing
2. Slicing
3. Concatenation
4. Repetitions
5. Membership
6. Comparison

 Operations examples description

 Creating the tuple with

 Creating a tuple >>>a=(20,40,60,”apple”,”ball”) elements of different data

 types.

 >>>print(a[0]) Accessing the item in the

 Indexing 20 position 0

 >>> a[2] Accessing the item in the

 60 position 2

 Slicing >>>print(a[1:3]) Displaying items from 1st

 (40,60) till 2nd.

 Concatenation >>> b=(2,4) Adding tuple elements at

 >>>print(a+b) the end of another tuple

 >>>(20,40,60,”apple”,”ball”,2,4) elements

 Repetition >>>print(b*2) repeating the tuple in n no

 >>>(2,4,2,4) of times

 >>> a=(2,3,4,5,6,7,8,9,10)

 >>> 5 in a

 Membership True Returns True if element is

 >>> 100 in a present in tuple. Otherwise

 False returns false.

 >>> 2 not in a

 False

 >>> a=(2,3,4,5,6,7,8,9,10)

Comparison

 >>>b=(2,3,4) Returns True if all elements

>>> a==b

in both elements are same.

 False Otherwise returns false

 >>> a!=b

 True

 Tuple methods:

 Tuple is immutable so changes cannot be done on the elements of a tuple once it is
assigned.

methods example description

a.index(tuple) >>> a=(1,2,3,4,5) Returns the index of the

 >>> a.index(5) first matched item.
 4

a.count(tuple) >>>a=(1,2,3,4,5) Returns the count of the

 >>> a.count(3) given element.
 1

len(tuple) >>> len(a) return the length of the

 5 tuple

min(tuple) >>> min(a) return the minimum

 1 element in a tuple

max(tuple) >>> max(a) return the maximum

 5 element in a tuple

del(tuple) >>> del(a) Delete the entire tuple.

Tuple Assignment:

 Tuple assignment allows, variables on the left of an assignment operator and values of
tuple on the right of the assignment operator.

 Multiple assignment works by creating a tuple of expressions from the right hand
side, and a tuple of targets from the left, and then matching each expression to a
target.

 Because multiple assignments use tuples to work, it is often termed tuple

assignment.

Uses of Tuple assignment:

 It is often useful to swap the values of two variables.

Example:

Swapping using temporary variable: Swapping using tuple assignment:

a=20 a=20

b=50 b=50

temp = a (a,b)=(b,a)

a = b print("value after swapping is",a,b)

b = temp

print("value after swapping is",a,b)

Multiple assignments:

Multiple values can be assigned to multiple variables using tuple assignment.

>>>(a,b,c)=(1,2,3)

>>>print(a)

1

>>>print(b)

2

>>>print(c)

3

Tuple as return value:

 A Tuple is a comma separated sequence of items.

 It is created with or without ().

 A function can return one value. if you want to return more than one value from a
function. we can use tuple as return value.

Example1: Output:

def div(a,b): enter a value:4

r=a%b enter b value:3

q=a//b reminder: 1

return(r,q) quotient: 1

a=eval(input("enter a value:"))

b=eval(input("enter b value:"))

r,q=div(a,b)

print("reminder:",r)

print("quotient:",q)

Example2: Output:

def min_max(a): smallest: 1

small=min(a) biggest: 6

big=max(a)

return(small,big)

a=[1,2,3,4,6]

small,big=min_max(a)

print("smallest:",small)

print("biggest:",big)

Tuple as argument:

 The parameter name that begins with * gathers argument into a tuple.

Example: Output:

def printall(*args): (2, 3, 'a')

print(args)

printall(2,3,'a')

Dictionaries:

 Dictionary is an unordered collection of elements. An element in dictionary has a key:
value pair.

 All elements in dictionary are placed inside the curly braces i.e. { }

 Elements in Dictionaries are accessed via keys and not by their position.

 The values of a dictionary can be any data type.

 Keys must be immutable data type (numbers, strings, tuple)

Operations on dictionary:

1. Accessing an element
2. Update
3. Add element
4. Membership

 Operations Example Description

 Creating a >>> a={1:"one",2:"two"} Creating the dictionary with

 dictionary >>> print(a) elements of different data types.

 {1: 'one', 2: 'two'}

 accessing an >>> a[1] Accessing the elements by using

 element 'one' keys.

 >>> a[0]

 KeyError: 0

 Update >>> a[1]="ONE" Assigning a new value to key. It

 >>> print(a) replaces the old value by new value.

 {1: 'ONE', 2: 'two'}

 add element >>> a[3]="three" Add new element in to the

 >>> print(a) dictionary with key.

 {1: 'ONE', 2: 'two', 3: 'three'}

 membership a={1: 'ONE', 2: 'two', 3: 'three'} Returns True if the key is present in

 >>> 1 in a dictionary. Otherwise returns false.

 True

 >>> 3 not in a

 False

 Methods in dictionary:

 Method Example Description

 a.copy() a={1: 'ONE', 2: 'two', 3: 'three'} It returns copy of the

 >>> b=a.copy() dictionary. here copy of

 >>> print(b) dictionary ’a’ get stored

 {1: 'ONE', 2: 'two', 3: 'three'} in to dictionary ‘b’

 a.items() >>> a.items() Return a new view of

 dict_items([(1, 'ONE'), (2, 'two'), (3, the dictionary's items. It

 'three')]) displays a list of

 dictionary’s (key, value)

 tuple pairs.

 a.keys() >>> a.keys() It displays list of keys in

 dict_keys([1, 2, 3]) a dictionary

 a.values() >>> a.values() It displays list of values

 dict_values(['ONE', 'two', 'three']) in dictionary

 a.pop(key) >>> a.pop(3) Remove the element

 'three' with key and return its

 >>> print(a) value from the

 {1: 'ONE', 2: 'two'} dictionary.

 setdefault(key,value) >>> a.setdefault(3,"three") If key is in the

 'three' dictionary, return its

 >>> print(a) value. If key is not

 {1: 'ONE', 2: 'two', 3: 'three'} present, insert key with

 >>> a.setdefault(2) a value of dictionary and

 'two' return dictionary.

 a.update(dictionary) >>> b={4:"four"}
It will add the dictionary

 >>> a.update(b)

 with the existing

 >>> print(a)

dictionary

 {1: 'ONE', 2: 'two', 3: 'three', 4: 'four'}

 fromkeys() >>> key={"apple","ball"} It creates a dictionary

 >>> value="for kids" from key and values.

 >>> d=dict.fromkeys(key,value)

 >>> print(d)

 {'apple': 'for kids', 'ball': 'for kids'}

 len(a) a={1: 'ONE', 2: 'two', 3: 'three'} It returns the length of

 >>>lena(a) the list.

 3

 clear() a={1: 'ONE', 2: 'two', 3: 'three'} Remove all elements

 >>>a.clear() form the dictionary.

 >>>print(a)

 >>>{ }

 del(a) a={1: 'ONE', 2: 'two', 3: 'three'} It will delete the entire

 >>> del(a) dictionary.

 Difference between List, Tuples and dictionary:

 List Tuples Dictionary

 A list is mutable A tuple is immutable A dictionary is mutable

 Lists are dynamic Tuples are fixed size in nature In values can be of any

 data type and can

 repeat, keys must be of

 immutable type

 List are enclosed in Tuples are enclosed in parenthesis () Tuples are enclosed in

 brackets[] and their and cannot be updated curly braces { } and

 elements and size consist of key:value

 can be changed

 Homogenous Heterogeneous Homogenous

 Example: Example: Example:

 List = [10, 12, 15] Words = ("spam", "egss") Dict = {"ram": 26, "abi":

 Or 24}

 Words = "spam", "eggs"

 Access: Access: Access:

 print(list[0]) print(words[0]) print(dict["ram"])

http://docs.python.org/2/tutorial/datastructures.html#tuples-and-sequences

 Can contain duplicate Can contain duplicate elements. Cant contain duplicate

 elements Faster compared to lists keys, but can contain

 duplicate values

 Slicing can be done Slicing can be done Slicing can't be done

 Usage: Usage: Usage:

 List is used if a

 Tuple can be used when data

 Dictionary is used

 collection of data that cannot be changed. when a logical

 doesnt need random

 A tuple is used in combination association between

 access. with a dictionary i.e.a tuple might key:value pair.

 List is used when represent a key.

 When in need of fast

 data can be modified lookup for data, based

 frequently on a custom key.

 Dictionary is used

 when data is being

 constantly modified.

Advanced list processing:

List Comprehension:
 List comprehensions provide a concise way to apply operations on a list.

 It creates a new list in which each element is the result of applying a given operation in a
list.

 It consists of brackets containing an expression followed by a “for” clause, then a list.

 The list comprehension always returns a result list.

Syntax

list=[expression for item in list if conditional]

List Comprehension Output

>>>L=[x**2 for x in range(0,5)] [0, 1, 4, 9, 16]

>>>print(L)

>>>[x for x in range(1,10) if x%2==0] [2, 4, 6, 8]

>>>[x for x in 'Python Programming' if x in ['a','e','i','o','u']] ['o', 'o', 'a', 'i']

>>>mixed=[1,2,"a",3,4.2] [1, 4, 9]

>>> [x**2 for x in mixed if type(x)==int]

>>>[x+3 for x in [1,2,3]] [4, 5, 6]

>>> [x*x for x in range(5)] [0, 1, 4, 9, 16]

>>> num=[-1,2,-3,4,-5,6,-7] [2, 4, 6]

>>> [x for x in num if x>=0]

>>> str=["this","is","an","example"] ['t', 'i', 'a', 'e']

>>> element=[word[0] for word in str]

>>> print(element)

Nested list:

List inside another list is called nested list.

Example:

>>> a=[56,34,5,[34,57]]

>>> a[0]

56

>>> a[3]

[34, 57]

>>> a[3][0]

34

>>> a[3][1]

57

Programs on matrix:

Matrix addition Output

a=[[1,1],[1,1]] [3, 3]

b=[[2,2],[2,2]] [3, 3]

c=[[0,0],[0,0]]

for i in range(len(a)):

for j in range(len(b)):

c[i][j]=a[i][j]+b[i][j]

for i in c:

print(i)

Matrix multiplication Output

a=[[1,1],[1,1]] [3, 3]

b=[[2,2],[2,2]] [3, 3]

c=[[0,0],[0,0]]

for i in range(len(a)):

for j in range(len(b)):

for k in range(len(b)):

c[i][j]=a[i][j]+a[i][k]*b[k][j]

for i in c:

print(i)

Matrix transpose Output

a=[[1,3],[1,2]] [1, 1]

c=[[0,0],[0,0]] [3, 2]

for i in range(len(a)):

for j in range(len(a)):

c[i][j]=a[j][i]

for i in c:

print(i)

Illustrative programs:

Selection sort Output

a=input("Enter list:").split() Enter list:23 78 45 8 32 56

a=list(map(eval,a)) [8,2 3, 32, 45,56, 78]

for i in range(0,len(a)):

smallest = min(a[i:])

sindex= a.index(smallest)

a[i],a[sindex] = a[sindex],a[i]

print (a)

Insertion sort output

a=input("enter a list:").split()

a=list(map(int,a))

for i in a: enter a list: 8 5 7 1 9 3

j = a.index(i) [1,3,5,7,8,9]

while j>0:

if a[j-1] > a[j]:

a[j-1],a[j] = a[j],a[j-1]

else:

break

j = j-1

print (a)

Merge sort output

def merge(a,b):

c = [] [3,9,10,27,38,43,82]

while len(a) != 0 and len(b) != 0:

if a[0] < b[0]:

c.append(a[0])

a.remove(a[0])

else:

c.append(b[0])

b.remove(b[0])

if len(a) == 0:

c=c+b

else:

c=c+a

return c

def divide(x):

if len(x) == 0 or len(x) == 1:

return x

else:

middle = len(x)//2

a = divide(x[:middle])

b = divide(x[middle:])

return merge(a,b)

x=[38,27,43,3,9,82,10]

c=divide(x)

print(c)

 Histogram Output

 def histogram(a): ****

 for i in a: *****

 sum = '' *******

 while(i>0): ********

 sum=sum+'#' ************

 i=i-1

 print(sum)

 a=[4,5,7,8,12]

 histogram(a)

 Calendar program Output

 import calendar enter year:2017

 y=int(input("enter year:")) enter month:11

 m=int(input("enter month:")) November 2017

 print(calendar.month(y,m)) Mo Tu We Th Fr Sa Su

 1 2 3 4 5

 6 7 8 9 10 11 12

 13 14 15 16 17 18 19

 20 21 22 23 24 25 26

 27 28 29 30

PART - A

1. What is slicing?
2. How can we distinguish between tuples and lists?
3. What will be the output of the given code?

a. List=[‘p’,’r’,’i’,’n’,’t’,]
b. Print list[8:]

4. Give the syntax required to convert an integer number into string?
5. List is mutable. Justify?
6. Difference between del and remove methods in List?
7. Difference between pop and remove in list?
8. How are the values in a tuple accessed?
9. What is a Dictionary in Python
10. Define list comprehension
11. Write a python program using list looping
12. What do you meant by mutability and immutability?
13. Define Histogram
14. Define Tuple and show it is immutable with an example.
15. state the difference between aliasing and cloning in list
16. what is list cloning
17. what is deep cloning
18. state the difference between pop and remove method in list
19. create tuple with single element
20. swap two numbers without using third variable
21. define properties of key in dictionary
22. how can you access elements from the dictionary
23. difference between delete and clear method in dictionary
24. What is squeezing in list? give an example
25. How to convert a tuple in to list
26. How to convert a list in to tuple
27. Create a list using list comprehension
28. Advantage of list comprehension
29. What is the use of map () function.

30. How can you return multiple values from function?
31. what is sorting and types of sorting
32. Find length of sequence without using library function.
33. how to pass tuple as argument
34. how to pass a list as argument
35. what is parameter and types of parameter
36. how can you insert values in to dictionary
37. what is key value pair
38. mention different data types can be used in key and value
39. what are the immutable data types available in python
40. What is the use of fromkeys() in dictioanary.

PART-B

1. Explain in details about list methods
2. Discuss about operations in list
3. What is cloning? Explain it with example
4. What is aliasing? Explain with example
5. How can you pass list into function? Explain with example.
6. Explain tuples as return values with examples
7. write a program for matrix multiplication
8. write a program for matrix addition
9. write a program for matrix subtraction
10. write a program for matrix transpose
11. write procedure for selection sort
12. explain merge sort with an example
13. explain insertion with example
14. Explain in detail about dictionaries and its methods.
15. Explain in detail about advanced list processing.

